Implementing a Proteomics Data Pipeline and Database on LabKey to promote in-depth analysis, data sharing & integration

Wen Yu, Jonathan Pryke, Gina Dangelo, Raghothama Chaerkady, Sonja Hess, Adolf Brown, Paula Gegwich and David Fenstermacher

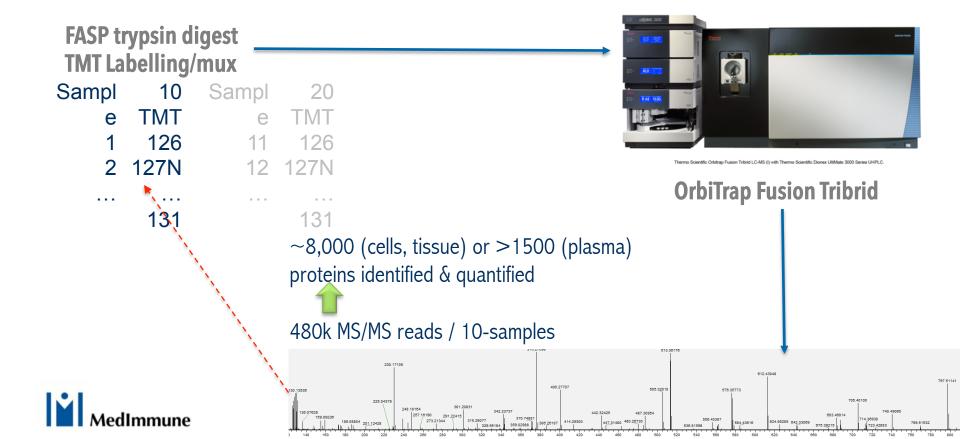
Research Bioinformatics, RD&I, Statistical Science and AD&PE

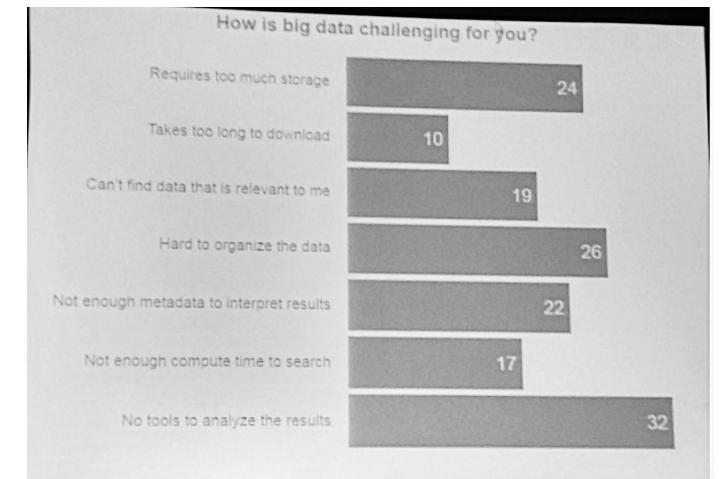
Medlmmune LLC, One Medlmmune Way, Gaithersburg, Maryland 20878 USA

Enabling Data-driven Discovery

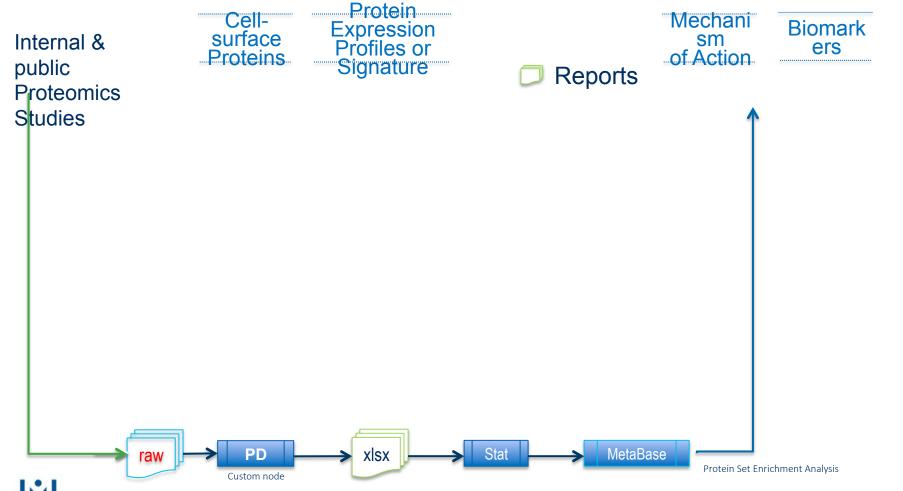
- Systematic collection of quantitative molecular phenotypes to probe what has happened;
- Focused experimental design with specified outcomes;
- Big-data approaches leading to deep, holistic, perhaps unexpected understanding of the system and biology.
- DATA → Understanding → Predictive
 engineering → LabKey → assay, execution
 analytics → algorithms → interpretation
 vis/integration → network biology → big picture, discovery

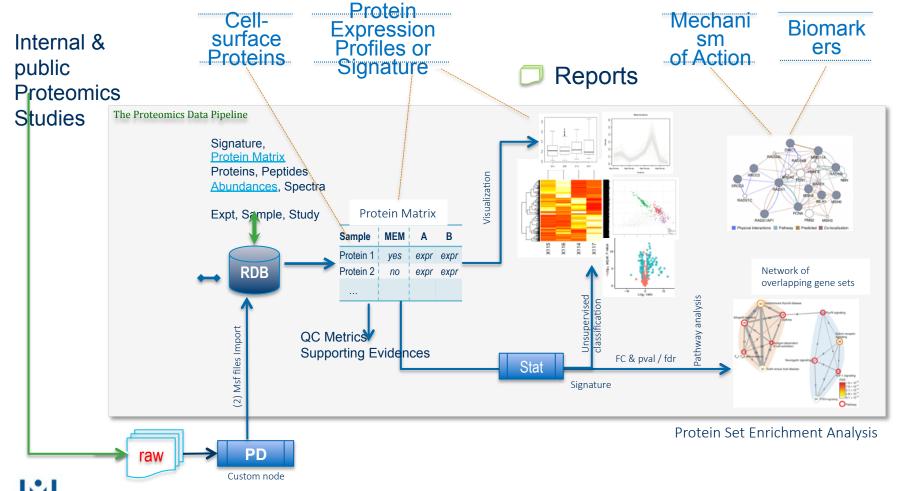
Genotypes (Genomics, Genetics)


Proteins, Peptides, Lipids & Metabolites



→ big picture, discovery. Targets, Biomarkers


NextGen Proteomics: ~ Complete Quantitation



Direct Pollume

Picking a Solution, aka House Hunting

Fully Furnished Estate

Commercial systems with built-in analysis pipeline

The Pipeline Design: the DIY Edition

Component	Function	Solution		
Study Design	Sample annotation and experimental factors	Proteome		
Protein ID and Quant	Peptide/protein ID, reporter ion intensities	Discoverer		
Data Preparation	Protein quants, imputation, data cleansing & formatting	Custom R-scripts		
Statistical modeling	Ad hoc and formal analysis for the significant changes in protein abundances	R/SAS, LabKey		
Data Visualization	Delivery to the investigators for access and exploration. Ad hoc experimentation.	R/Shiny, LabKey		
Pipelining	Streamlining the workflow	LabKey		
Data management	Repository, project tracking, visualization, R-integration	LabKey		
Pathway, G/PSEA	Biological contextualization and hypothesis generation	R/Shiny		

Solutions in the Era of Open Source

LabKey, R/Shiny

Free Widgets DIY

Designers Builders

Free new construction

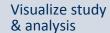
LabKey Implementation: Data Import

- Load data to LabKey database
- Send processed data out for stat analysis

Import new study

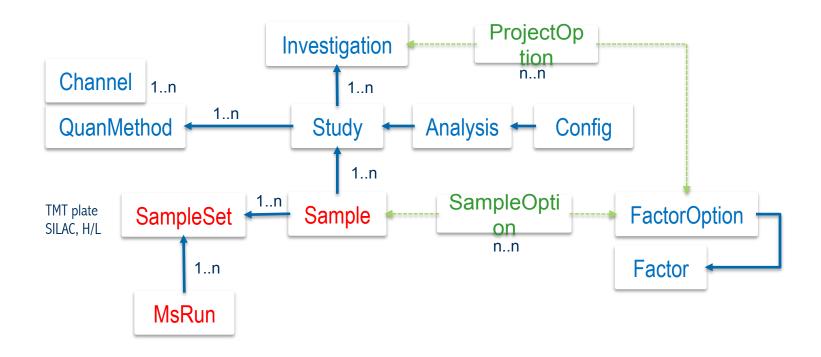
Initiate new investigation

Import

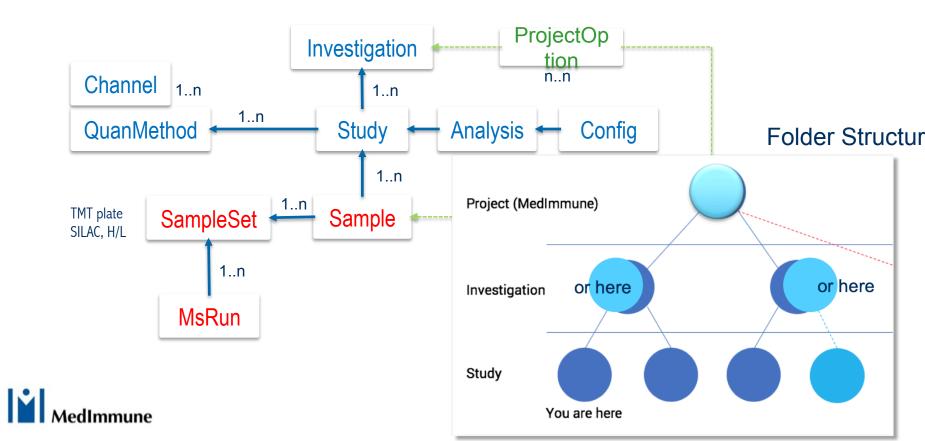

stat outcomes

 Attach data to the study

Visualize primary data

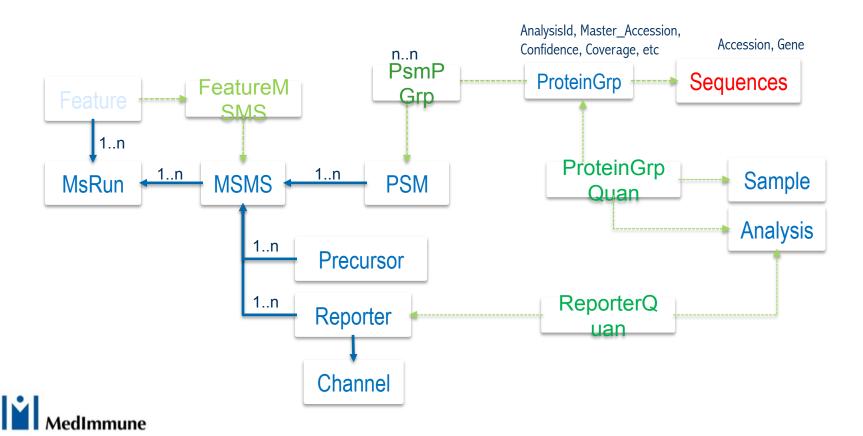

- Browse the contents by table or view'
- •In-depth review in Shiny app

- Drill-down from protein ID
- •In-depth review in Shiny app



Data Model: Meta Data

Folder Structure vs Meta Data Hierarchy

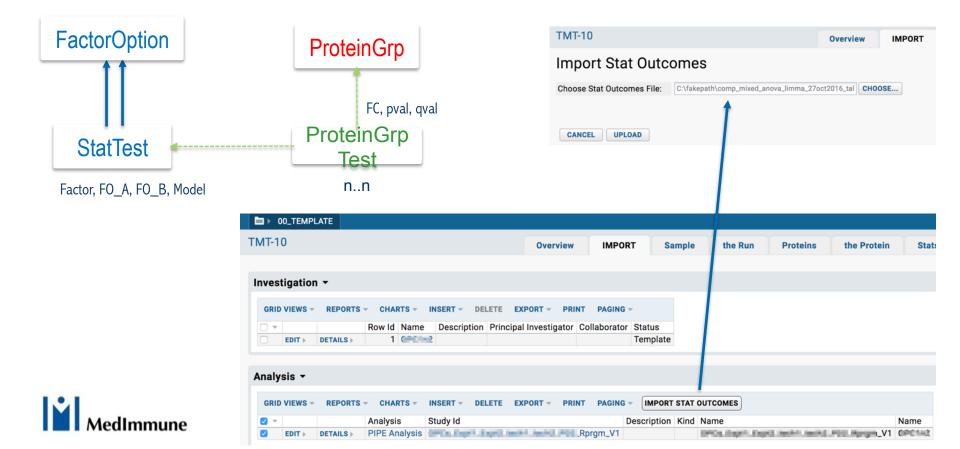

Data Loading Logics: Samples

- Populate the 'Factor' and 'Option' tables if necessary as described previously
- Create entries in 'SampleOption' table that link samples to options
- Cross-reference the 'Channel' table via 'Channel' field and populate the 'Channelld'

Channel [‡]	PlateName	÷	Plate 0	Group ©	Cohort	Replicate ÷	ChannelName	
X126	151124.	_TMT1_MS2_F1	1	NS		1	X126	
X126	151124.	_TMT2_MS2_F	2	NS		3	X126	
X127_C	151124.	_TMT2_MS2_F	2	LPS		3	X127C	
X127_C	151124.	_TMT1_MS2_F1	1	LPS		1	X127C	
X127_N	151124.	_TMT1_MS2_F1	1	NS		2	X127N	
X127_N	151124.	_TMT2_MS2_F	2	NS		4	X127N	
X128_C	151124.	_TMT1_MS2_F1	1	LI		1	X128C	
X128_C	151124.	_TMT2_MS2_F	2	LI		3	X128C	
X128_N	151124.	_TMT2_MS2_F	2	LI		2	X128N	
X128_N	151124.	_TMT1_MS2_F1	1	LPS		2	X128N	
X129 C	151124	TMT2 MS2 F	2	LA		2	X129C	

Data Model: MS Data

MSMS, PSM, PsmPGrp

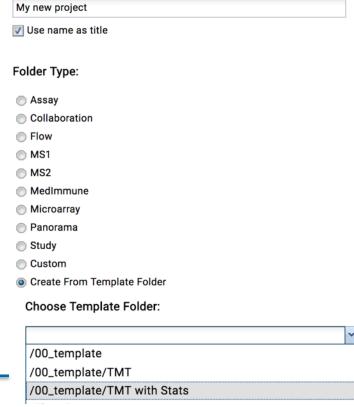

For each row in PSM.all.Rdata

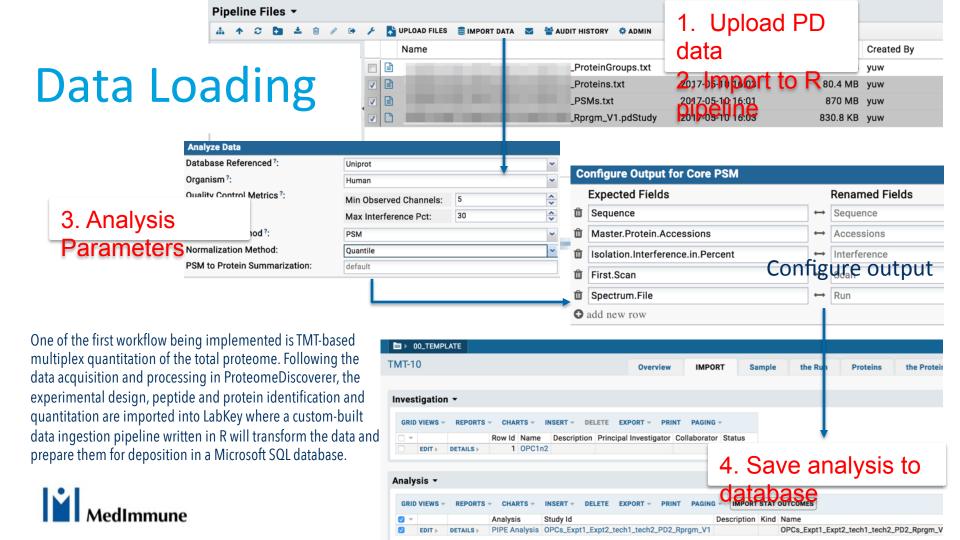
- Grab the FK to 'MsRun' with the 'Run' field
- Create an entry in 'MSMS' if the Run/Scan combination is not present already
- Create entry in 'Precursor' table with FK to 'MSMS'

- Create entries in 'Reporter' table for each channels with FK to 'Channel' rows sharing the same 'ChannelName'
- Create an entry in 'PSM' table with FK to the 'MSMS' entry
- Grab the FK to 'ProteinGrp' with the 'Accessions' and 'AnalysisId' fields;
- Create an entry in 'PsmPGrp' table with FK to PSM and ProteinGrp.

Protein			Confide	nce [‡] Pepti	de	Mod	ls					[♀] Cha	arge [‡] Cha	rge.obs 🏺	Ranl	¢ =			
			High	igh [R].		N-Te	N-Term(TMT6plex); K8(TMT6plex)						3	3					
			High	[R].]] N-Term(TMT6plex)						4	4 1						
			High	[R].		N-Term(TMT6plex); K10(TMT6plex)				4									
			High	[R].		N-Te	N-Term(TMT6plex)					2	2	2 1					
	mz [‡]	МН	ppm [‡]	Intensity [‡]	SN.Reporter [‡]	Inject	ion [‡]	RT [‡]		Usage [‡]	Info [‡]	Sequ	ence	Accessi	ions [‡] In	Interference	e [‡] Scan [‡]		
	481.2494	1441.734	0.8534145	173030112	9.59		1	13.14821	0.001	Use	Unique	D				5.8078	1578		
	433.2587	1730.013	-0.3717548	3189741	28.87		33	13.24840	0.001	Use	Unique	RI				8.2175	1614		
	443.0070	1769.006	-0.6066390	5019254	287.87		33	13.45662	0.000	Use	Unique	SF				7.3264	1690		
	567.3093	1133.611	0.1079945	18520848	10.33		5	13.47412	0.002	Use	Unique	A ⁻				3.7785	1695		
	581.6573	1742.957	1.3071 Run			\$	X126	÷ Х1	27N [‡]	X127C		sn ÷	X128C		\$	X129C [‡]	X130N	X130C	X131
	601.0036	1800.996	-0.3560 151	124.	TMT1_MS2_	F1.raw	7.7	64347 2	2.351445	15.8441	8 12.	49247	6.41373	86	NA	12.13688	19.663802	8.552111	7.775993
			151	124.	TMT1_MS2_	F1.raw	18.3	75119 13	3.361465	50.7697	7 61.	27787	24.89518	30	NA	21.25711	52.323013	18.376584	17.905292
			151	124.	TMT1_MS2_F1.raw		169.3	40902 90	.950866	556.8393	3 553.	17669	233.14177	70 26.506	8669	224.81314	562.603054	4 175.340205	176.183739
MedImmune		151	124.	TMT1_MS2_	1_MS2_F1.raw		60915 3	3.758381	16.1010	8 10.	62974	6.91347	72 NA		18.67190	9.994884	11.368426	12.230057	
		151	124.	TMT1_MS2_	F1.raw	27.5	64634 16	5.196917	52.9500	2 51.	94636	29.48207	79 0.225	59693	36.25498	60.995901	34.147985	29.769754	
		151	124.	TMT1_MS2_	F1.raw	32.0	85319 11	.529672	98.7060	1 95.	54057	47.36898	35	NA	31.44710	109.052791	33.864875	28.996786	

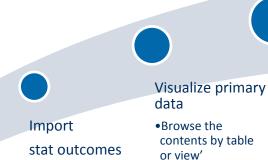
Data Model: Quantitative Outcomes



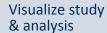

medImmune Module and TMT Template

- ◆ All database tables and serverside logics are implemented in a new MedImmune module
- ◆ UI layout and interactive reporting are written as a "template" folder, which can then be used to create a new "investigation".

Name:



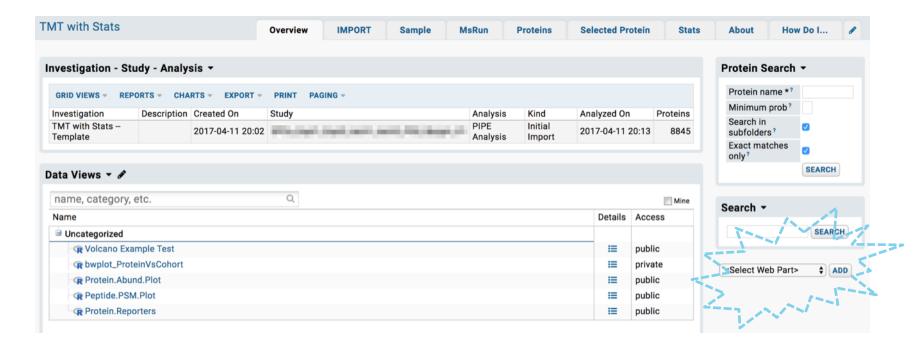
LabKey Impl: Results and Visualization



Attach data to

the study

 Browse the contents by table or view'


•In-depth review in Shiny app

- Drill-down from protein ID
- •In-depth review in Shiny app

Study Portal

Customize Query Web Part Title:

MsRun Summary

DIY UI and Report

- Data grid + custom query offers flexible way to review the dataset
- Custom URL enable master-detail view into complex hierarchical data

expt1_tech1_F1 160524_

expt1_tech1_F1 160524_

expt2_tech1_F1 160524_

expt2_tech1_F1 160524_

expt2_tech1_F1 160524_

expt2_tech1_F1_160524

expt1_tech1_F1 160524_

expt1_tech1_F1 160524_

4402

1 2008

1 8305

1 2554

1 8443

2 4597

2 7255

2 4249

2 1662

1 4665

1 3819

_expt1_tech2_F2.raw

_expt1_tech2_F9.raw

_expt2_tech1_F15.raw

_expt2_tech1_F9.raw

_expt2_tech2_F15.raw

expt2_tech2_F5.raw

_expt1_tech1_F15.raw

_expt1_tech1_F16.raw

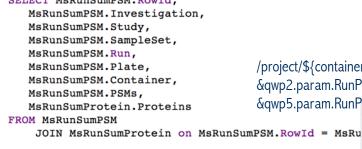
2388

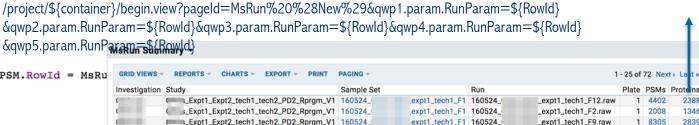
1346

2839

1511 2811

2299

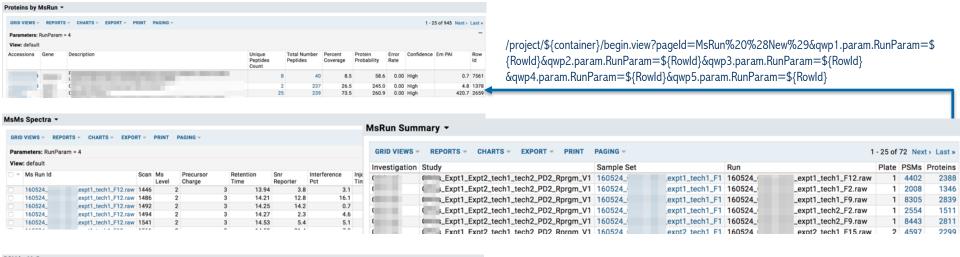

2763


2282

950

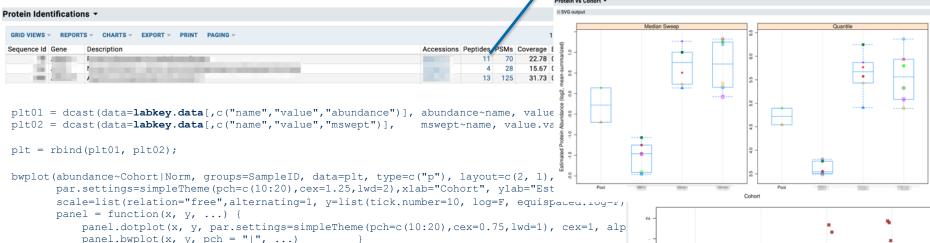
2520

2167

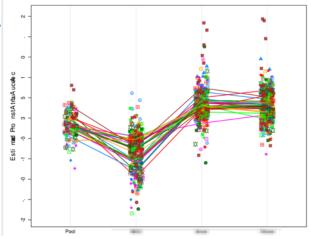


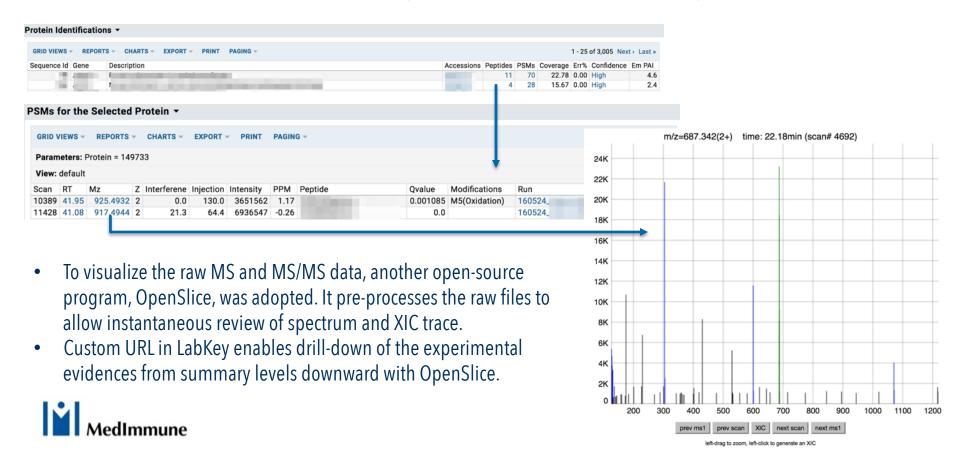
Expt1_Expt2_tech1_tech2_PD2_Rprgm_V1 160524_

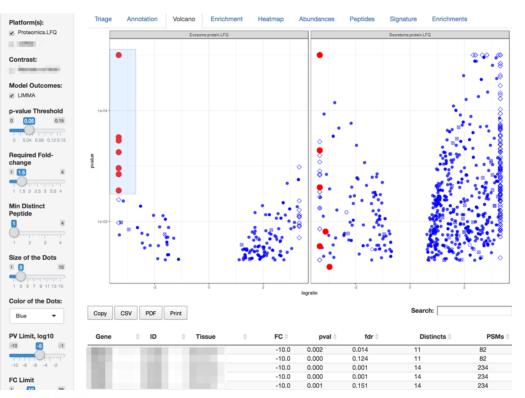
Proteins, PSM and MSMS Results from a MS-Run

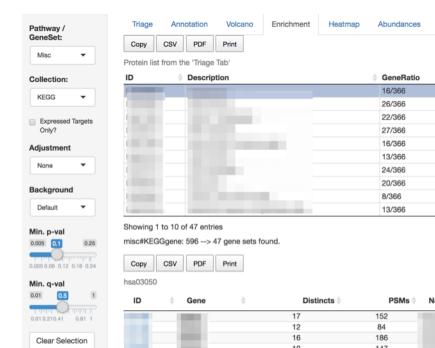


- A key strengths of LabKey is the flexibility of custom query, visualization and report with SQL/R or point-n-click interface.
- Once a study is imported, its experimental design, LcMsMs runs, protein identification and quantitation can be inspected via the web-interface as data grids or plots.


Protein Abundances - SQL/R Reporting


For simple visualization, boxplot, volcano plot can be readily generated in LabKey and shared with other researchers.


);


PSM → MS/MS Spectrum via OpenSlice

In-depth Analysis in a R/Shiny App

- Expose LabKey data to Shiny app for in-depth analysis
- Live data tables, linked volcano plots, enrichment analysis, heatmap, and integration with RNASeq, etc.

Lessons Learned

- LabKey, due to its open-source architect and abundance of widgets and customizability, is an ideal environment to manage complex omics data such proteomics
- By externalizing the platform-specific processes, different data types can be readily managed in LabKey.
- Template folder provides a good compromise between UI flexibility and usability.

- ◆ Better grasp of the 'folder' concept and the scoping rule is crucial
- Proper division of labors is critical
 - Server-side data management
 - Client-side UI customization and reporting
- Better out-of-box features will reduce the upfront works in a commercial settings.

Future Plan

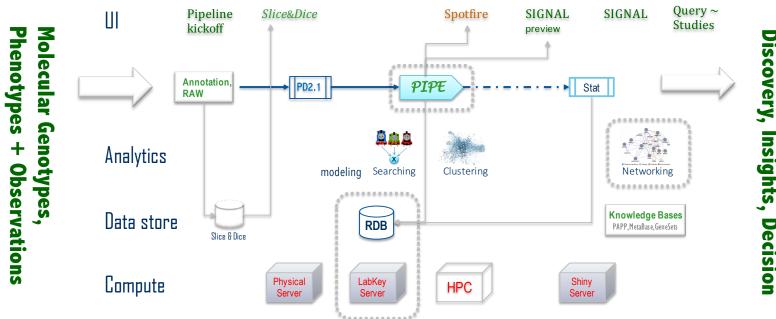
- Additional workflows for
 - Label-free quantitation by Maxquant
 - Targeted proteomics using the "Panorama" module

Ul refinements

- to accommodate multiple workflows and to clarify user inputs
- Factors, factor options and sample attribute editor
- Request for Stat Analysis

Acknowledgements

- Research Bioinformatics,
- ◆ Proteomics, AD&PE
- ◆ RD&I
- Statistical Science


MedImmune, AZ

- ◆ Cory Nathe , Frank Lee
- ◆ Josh Eckels
- Steve Hanson, Avital Sadot

LabKey

Data Pipeline for *Proteo/Metabolo/Lipidomics*

Discovery, Insights, Decision

