

Structured Data Capture of Biotherapeutic Design & Analytical Results to Enable the Development of Predictive Models

2017-10-05

J. Alex Taylor 2017 LabKey User Conference

Mission: Design and apply innovative technologies to dramatically expand global access to biotherapeutics

Outline

- Brief intro to Just
- Why we chose LabKey to play a critical role in meeting our goals
- Abacus (focus on Ab Classification & LabKey integration)
- Selection of LabKey-integrated solutions to automating data capture
 - Bioreactor sample generation
 - DNA sequencing assay
 - Cell line development automation
- JStruct
- Using data to create predictive models

Just was formed in 2014 to expand global access to important biotherapeutics

- Over 80% of the planet cannot afford most of the breakthrough therapeutics of modern biotechnology
- Just was formed to reduce the cost of biologics by at least 10x, making these therapeutics more accessible to a global population
- This will help expand markets for current therapies and lay a foundation for new therapeutic approaches

${\bf J}_{\,\bullet}$ Design will accelerate development, improve product throughput and reduce the over cost of biologics

2017 LabKey User Conference

Just.

- A collaboration between Just and LabKey, with input gathered from an advisory council of Pharma & Biotech representatives
- Goal: Build upon the foundation of LabKey Server to develop an application to support large molecule development
- Core components:
 - Entity Registration
 - Assay Data Integration
 - Querying & Analysis
 - Media Registration
 - Workflow Management
- Project kicked-off Fall 2015 | Product launched Spring 2017

LabKey Biologics Registers Entities, Tracks Samples, and **Captures Assay Data**

Abacus[™] is a system for the analysis and engineering of antibodies and antibody-like molecules

Hot Spot Analysis

- Covariance violations (stability) (Gunasekaran 2004)
- Isomerization/Deamidation
- Much more...
- Issues communicated downstream

Variant Designs

- Utilize structure analysis and calculations
- Variants tracked across analyses
- Combinatorial variant sequence production
- Push to registration system to enable
 Physical properties calculations associated data capture

CONSENSUS

ipilimumab

denosumab

gantenerumab

teprotumumab

robatumumab

📾 ipilimumab LC

Full analysis report generation

Sequence Analysis

- Structure-based numbering system Antibody characterization (based on Honegger 2001) data utilized
- Full alignments with annotations
- Positional frequency analysis across
- specified reference antibodies
- Clading for diversity assessment and data used to predict/repair characterization sibling engineering
- Germline alignments within or across subclasses
- Structure and stability-based CDR grafting / humanization

LS

SPGERA

Structure-based alignments

IVLTQSP

Germline

Machine Learning

- Wide variety of structure
 - attributes calculated Paired structure, sequence,

Variable Region HotSpots Export -Chai Region(s) Export to Excel Kappa Kappa Variabl KV:10 Export SVL for HotSpot Highlighting in MOI Covariance Site IgG1 H0 Heavy Variable HV:1 Framework 1 Covariance Site IoG1 HO Heavy Variable Framework 1 HV:3 HV:56 Covariance Site Heavy Variable Framework 2 S [1 violation; max %: 80 Non-Standard N-Link Glycosylation Sit IgG1 HC Heavy Variable CDR 2 HV:59..65 NASG CDR 2 HV:72..73 Potential Isomerization Site (CDR Tier 2 IoG1 HC Heavy Variable DS Potential Deamidation Site (CDR Tier 2 InG1 HC Heavy Variable CDR 3 HV:112..113 NT

Hot spot detection

Antibody Fv

displayed

with hot spots

Ab domains can be modified and rearranged like building blocks

Ω . Spiess et a Molec 67 (2015) 95--106

Just

86

Antibody Classification Steps

- 1. Initial detection performed with region (domain) PSSMs
- 2. Second pass matches to ASN-aligned germline sequences*
- 3. Region alignment tuning (i.e. CDR gapping)
- 4. Resolve region overlaps if present
- 5. Attempt to assign unrecognized regions to unstructured regions (hinge) and sequence parts
- 6. Assignment of a chain format based on the region pattern
 - *Available germlines include human, mouse, rat, rabbit and 6 other species with partial coverage. Users can provide their own:
 - Germline data as XML
 - Custom sequence parts for classification
 - Chain and structure formats.

Result is a structurally-aligned sequence with region and feature annotation

Ab Classification Results

arcitumomab_HC

anrukinzumab_HC ascrinvacumab_HC aprutumab_HC arcitumomab_HC

ASN (Antibody Structural Numbering)

- Builds upon AHo variable region numbering (Honegger 2001)
- Unique assignment for every residue in the sequence
- Constant region Ig domains built initially from SCOP structure-based alignments
- Allows for insertions when necessary
- Allows for flexible arrangement of regions and multiple regions of the same type

Molecules and their variants can be pushed to LabKey Biologics via the API

- Works in bulk
- Registers nucleotide and protein sequences as well as molecules
- Sequences registered once by identity
- Light and Heavy chains are associated
- Antibody features are auto-detected
- Parental lineage is maintained
- LKB then allows registration of constructs, expression systems, etc., with associated data

Simple Assay Data Import: Folder Monitor Daemons

33

Simplifying Bioreactor Sample Generation

A LKH (LabKey Help	er) v0.2	5									* 🗶	C •
Experiments O New	Bioreactor Sample Generation Create CSV							🖍 Edi	t 🕤	Clone		
Filter Text 🖪 🕇 🗙	Statu	us: 🔒 CLOSED							Exp ID: 1002			
Open Experiments	Run Type: Perfusion Start Date: 2017-07 -			-07 Molecule Set: JML111 Label Printer: CAB					CH4/600	- L	abel Count:	3 🗸
 Closed Experiments 	Reactor Label Template: JML111 D@Day											
Deleted Experiments	Permeate Label Template:											
■ JML111 2017-07-07		Comme	nts: JML111 DOE#3									
■ JML111 2017-06-26 Engineering run #3 satellites - in		slot <u>S-201</u> 13 JML11	170707-21 □™ I1-20170707-R13	slot 14	<u>S-201707(</u> JML111-20	17-22	slot 15	<u>S-201707</u> JML111-20	07-23 □™ 170707-R15	^{slot}	<u>S-2017070</u> JML111-201	<u>7-24</u> 70707-R1
Experiment Definition Template		Generate Reactor Sample	Generate Permeate Sample	Ge Re Si	enerate eactor ample	Generate Permeate Sample	Ger Re a Sa	nerate actor mple	Generate Permeate Sample	Gen Rea Sar	erate ictor nple	Ger Perr Sa
	^{day}	<u>S-20170714-1</u> [day: 7] 7:07 AM JML111 D7		<mark>S-20170</mark> [day: 7] 7 JML111 D	7 14-2		S-201707 [day: 7] 7:0 JML111 D7	714-3		<mark>S-201707</mark> [day: 7] 7:0 JML111 D7	14-4	
				S-20170 [day: 7] 9 JML111 D	7 14-23		S-201707 [day: 7] 9:- JML111 D7	7 14-24		S-201707 [day: 7] 9:4 JML111 D7	14-25	
	day DM 6	<u>S-20170713-1</u> [day: 6] 7:30 AM JML111 D6		<mark>S-20170</mark> [day: 6] 7 JML111 D	713-2 (:30 AM		S-201707 [day: 6] 7:4 JML111 D6	713-3		S-201707 [day: 6] 7:4 JML111 D6	13-5	
		<u>S-20170713-4</u> [day: 6] 7:47 AM JML111 D6		<u>S-20170</u> [day: 6] 1 JML111 D	0:05 AM		S-201707 [day: 6] 10 JML111 D6	7 13-15		<u>S-201707</u> [day: 6] 10 JML111 D6	13-16 :05 AM	

DNA Sequencing Assay

A LKH (LabKey Helper) v0.25

🌣 🗶 C 💿

nput/Review 🔶	[2] Samples/Request						
quence Input							Review Input
Nucleotide Sequences: @NucSeq	NS-1062 NS-1063 NS-1064 NS-1065 NS-1066 NS-1067 NS-1068	Fw Re Sa	Clones per Sequence: 4 Vector: V- rd Sequencing Primer: CM ev Sequencing Primer: 10- ample Label Template: Dr Notes:	4 (V-15 MV-Forw 0-336528 Dna seq.	Clone Clone ward 3137 sample for @NucSeq, Clone: @C	lone	
view							→ Create Samples
view Protein Seq.	Ab Chain Format	Nucleotide Seq.	Nuc. Sequence Ler	ength	Genewiz Primer(s)*	Sample Label	→ Create Samples Notes
view Protein Seq. ² S-1493	Ab Chain Format IgG1 Heavy Chain	Nucleotide Seq. NS-1062	Nuc. Sequence Ler	ength 1395	Genewiz Primer(s)* CMV-Forward;10-336528137	Sample Label Dna seq. sample for NS-1062, Clone: <clone_number></clone_number>	→ Create Samples Notes
view Protein Seq. 2S-1493 2S-1495	Ab Chain Format IgG1 Heavy Chain Kappa Light Chain	Nucleotide Seq. NS-1062 NS-1063	Nuc. Sequence Ler 1	ength 1395 696	Genewiz Primer(s)* CMV-Forward;10-336528137 CMV-Forward	Sample Label Dna seq. sample for NS-1062, Clone: <clone_number> Dna seq. sample for NS-1063, Clone: <clone_number></clone_number></clone_number>	→ Create Samples Notes
view Protein Seq. 2S-1493 2S-1495 2S-1496	Ab Chain Format IgG1 Heavy Chain Kappa Light Chain IgG1 Heavy Chain	Nucleotide Seq. NS-1062 NS-1063 NS-1064	Nuc. Sequence Ler 1	ength 1395 696 1404	Genewiz Primer(s)* CMV-Forward;10-336528137 CMV-Forward CMV-Forward;10-336528137	Sample Label Dna seq. sample for NS-1062, Clone: <clone_number> Dna seq. sample for NS-1063, Clone: <clone_number> Dna seq. sample for NS-1064, Clone: <clone_number></clone_number></clone_number></clone_number>	→ Create Samples Notes
view Protein Seq. PS-1493 PS-1495 PS-1496 PS-1498	Ab Chain Format IgG1 Heavy Chain Kappa Light Chain IgG1 Heavy Chain Kappa Light Chain Kappa Light Chain	Nucleotide Seq. NS-1062 NS-1063 NS-1064 NS-1065	Nuc. Sequence Ler 1 1	ength 1395 696 1404 696	Genewiz Primer(s)* CMV-Forward;10-336528137 CMV-Forward CMV-Forward;10-336528137 CMV-Forward;10-336528137 CMV-Forward;10-336528137	Sample Label Dna seq. sample for NS-1062, Clone: <clone_number> Dna seq. sample for NS-1063, Clone: <clone_number> Dna seq. sample for NS-1064, Clone: <clone_number> Dna seq. sample for NS-1065, Clone: <clone_number></clone_number></clone_number></clone_number></clone_number>	→ Create Samples Notes
view Protein Seq. PS-1493 PS-1495 PS-1496 PS-1498 PS-1499	Ab Chain Format IgG1 Heavy Chain Kappa Light Chain IgG1 Heavy Chain Kappa Light Chain IgG1 Heavy Chain IgG1 Heavy Chain	Nucleotide Seq. NS-1062 NS-1063 NS-1064 NS-1065 NS-1066	Nuc. Sequence Ler 1 1 1	ength 1395 696 1404 696 1407	Genewiz Primer(s)*CMV-Forward;10-336528137CMV-ForwardCMV-Forward;10-336528137CMV-Forward;10-336528137CMV-Forward	Sample Label Dna seq. sample for NS-1062, Clone: <clone_number> Dna seq. sample for NS-1063, Clone: <clone_number> Dna seq. sample for NS-1064, Clone: <clone_number> Dna seq. sample for NS-1065, Clone: <clone_number> Dna seq. sample for NS-1065, Clone: <clone_number> Dna seq. sample for NS-1066, Clone: <clone_number></clone_number></clone_number></clone_number></clone_number></clone_number></clone_number>	→ Create Samples Notes
view Protein Seq. PS-1493 PS-1495 PS-1496 PS-1498 PS-1499 PS-1501	Ab Chain Format IgG1 Heavy Chain Kappa Light Chain IgG1 Heavy Chain Kappa Light Chain IgG1 Heavy Chain Kappa Light Chain	Nucleotide Seq. NS-1062 NS-1063 NS-1064 NS-1065 NS-1066 NS-1067	Nuc. Sequence Ler 1 1 1	ength 1395 696 1404 696 1407 699	Genewiz Primer(s)*CMV-Forward;10-336528137CMV-ForwardCMV-Forward;10-336528137CMV-Forward;10-336528137CMV-Forward;10-336528137CMV-Forward;10-336528137	Sample Label Dna seq. sample for NS-1062, Clone: <clone_number> Dna seq. sample for NS-1063, Clone: <clone_number> Dna seq. sample for NS-1064, Clone: <clone_number> Dna seq. sample for NS-1065, Clone: <clone_number> Dna seq. sample for NS-1066, Clone: <clone_number> Dna seq. sample for NS-1066, Clone: <clone_number> Dna seq. sample for NS-1066, Clone: <clone_number> Dna seq. sample for NS-1067, Clone: <clone_number></clone_number></clone_number></clone_number></clone_number></clone_number></clone_number></clone_number></clone_number>	→ Create Samples Notes

DNA Sequencing Assay

Liquid Handler Worklists for Cell Line Development Automation

▲ LKH (LabKey Helper)	v0.23		🏟 🤾 🔁 Alex Taylor 🧕
CLD Automation			₽ Reset
[1] Enter Passaging Data	→ [2] Review and Configure →	[3] Download Worklists 🔶	[4] Plates Created!
Download Worklists			
		Derive new LabKey Sar	mple IDs in destination plate(s)
	←	Review and Configure ± Register P	Plates and Download Worklists
Protocol: 96-96	Cell Transfer Tip: DiTi 1000uL SBS LiHa	Min/Max Capacity: 25 µL / 940 µL	
Compact? false	Media Transfer Tip: DiTi 1000uL SBS LiHa	Min/Max Capacity: 25 µL / 940 µL	
Worklist Display Desti	nation Plates/Samples		
C;Passaging Protoc C;Generated 2017.0 C;************** C;Setting tips for B; S;7 C;Media transfer C;Place reagent at C;Place dest at de A;Reagent-1;;Troug D;Dest-1;;96 Well W; A;Reagent-1;;96 Well	<pre>ol 9.15 15:05 PM ************************************</pre>		

Raw data interpretation can be subjective, so we are automating data analysis to improve results from characterization assay data

- Develop analysis methods that process raw assay results into values that are
 - Defined
 - Objective
 - Consistent
 - Reliable
 - Curated
 - Structured
 - Informative

- Which leads to data that is more useful for machine learning
- Data analysis automation also improves analysis throughput and capacity

Name

C LabKey Biologics

Struct - storage and retrieval of public and proprietary three-dimensional macromolecular structures

- JStruct is an open source stand-alone software tool designed and developed by Just Biotherapeutics for the storage and retrieval of public and proprietary threedimensional macromolecular structures as well as information parsed from their content.
- JStruct provides a robust and secure means to store, access, search and utilize both public and proprietary structures within the same system. With JStruct it is possible to search, calculate and compare structures across a full set of files while keeping internal sequences from being publicly exposed.
- The **JStruct** open source code is available via Bitbucket and is licensed under the GNU General Public License.
- JStruct will facilitate the calculation/storage/retrieval of structure attributes that will be used for machine learning.
- To download or for more information: <u>http://www.justbiotherapeutics.com/jstruct</u>

Machine Learning being applied to predict molecular properties across multiple antibodies and antibody variants

Summary

- Expertise → Platform → Data → Predictive Models → Speed, Capacity, Cost
- Capture all virtual entities and associated data
- Democratize all data
- Develop data analysis systems to be Objective, Consistent, Reliable, Informative
- Automate data capture and analysis
- Build machine learned predictive models to select and engineer antibodies for optimal characteristics

Aknowledgements

Just Biotherapeutics

Tileli Amimeur **Rutilio Clark** Alaina Floyd Alison Gillespie Jeff James Bruce Kerwin Randal Ketchem Alison Leonard Jeremy Shaver **Christine Siska** Pauline Smidt **Russell Williams**

LabKey

Kevin Krouse Ryan Luce

just adjective

based on or behaving according to what is morally right and fair. "a just and democratic society"

synonyms:

fair, fair-minded, equitable, unbiased, unprejudiced, open-minded, nonpartisan

