

Mapping Cell Line Development Workflows with LabKey Biologics

Bo Zhai, PhD

BioTherapeutics Development | Janssen Research & Development, LLC 2019 LabKey User Conference & Workshop | Seattle, WA

Introduction

Cell & Developability Sciences Cell line selection process

Mapping CLD Process

Molecule Registry Lineage tracking

Challenges

Unique ID Automation Project-centric

Janssen

PHARMACEUTICAL COMPANIES OF

Johnson & Johnson

Janssen

Introduction

1

Large Molecule Early Development

Drive candidate selection and development of the manufacturing cell line

Off-Platform Programs Present New Challenges

>50% of the Early Pipeline are not mAb

Johnson & Johnson

More Molecules and Reduced Timeline

PHARMACEUTICAL COMPANIES OF

Johnson Johnson

Janssen

Typical Cell Line Development Timelines

New Cell Line / New Process

- Eliminated subcloning reduced timeline by 1.5 months (VIPS Technology)
- Site directed integration. Titers are more predictable, screen fewer clones.
- 'Early Look Material' produced from transfection pool (not clonal): Start Development Sooner.

PHARMACEUTICAL COMPANIES OF

Johnson & Johnson

<u>lanssei</u>

Solutions in Cell line development

Timeline improvements with new CLD process:

First three CLD programs in new host and process

Information Management (3-4 hours/scientist/week 6,240 FTE hours per year)

pharmaceutical companies of Johnson&Johnson

Reduced CLD Timeline (7 months -> 5months)

Information silos within ELN

PHARMACEUTICAL COMPANIES OF

Johnson Johnson

Janssen

Janssen

Mapping CLD Process

2

LabKey Biologics

Rev Biologics		
Q		
Registry	Assays	Samples
Media	Workflow	Experiments

LabKey Biologics

C LabKey Biologics		a -
Q		
Registry	Assays	Samples
Media	Workflow	Experiments

janssen

Registry – Molecule Information Import

Main Proteins. <u>Prote</u>	Targets	Polype Protein Inventor	eptide/Library <u>y Requests</u> <u>Pr</u>	otein Scale	Constructs	Clones	-up Jobs	Plasmid Di	NA	Signal <u>Cell Line F</u>	Peptides tequests 1	Vi	ruses <u>n Plates</u>	Prot <u>Assay Pl</u>	teins lates Pr	JNJ#	C-Codes	tic Moleo	ITS	Assa Assay Su	ays A <u>mmary Help</u>	ssemblies	CBI	S Support	
Proteins Isotyp	e Control Prote	ins AA Prote	ins.										I	Logout I	BoZhai O	9/23/2019 4:1)7:09 PM								
A Proteins	oine																								
mung AA Prot		(Quick Search	Advanced	<u>l Search</u> Select	all 4	Clears	lable Search Resu	Uetail	s <u>Hide Hi</u>	ader Expe	ort													
Select	Sort by	Columns	page size	25	< >	>	page 1	(of 1 (1 rec	ord)															
elect <u>mAb AA</u>	<u>Heavy Chain</u> CDS ID	Light Chain CDS ID	Heavy Chain CE	S	Light Chain CDS		ain CDS	Light Chain CDS ID 2	Heavy Chain CDS 2	Light Chain CDS 2	Assay Summaries	Chain Multiplier	Mol Wt	<u>Total</u> Length	<u>ug/pMole</u>	Extinction Coefficient	Theoretical Absorptivity Factor	<u>pi</u>	Charge at pH7	Protein Type	Biophysical Property Calc Date	Biophysical Property Calc By	Comments	Registered by	Registrat Date
0047 PT1B296	CDS000023144	CDS000023158	AA Sequence QVQL/ESGGG (448)	Peptide ID	AA Sequence	Peptide D							147952.8	1322	0.14795	2.1272E+05	1.4378	8.03	14.2	mAb	02/14/2018	Peter Buckley	,	Rebecca Custers- Allen	06/09/20
< >	>																					1			-
													Pyt	:hc	on	Sci	ript	(9	Sus	sa	n)				
🍣 Lab	Key B	iologia	IS Se	arch	Registry	Sar	nples	Ass	says	Med	ia V	/orkflov	w 1	Experii	ments										
Registry	Molecule S	ets Mol	ecules M	olecula	r Species	Protein	Seque	nces I	Nucleo	tide Sec	uences	Expre	ession §	System	ns C	onstruct	s Vecto	rs	Cell Li	nes					

 Select...

 Name

 Alias

 Description

 Mass

 PI

 </t

Registry - Molecule

🤗 La	abKey	Biolo	giCS Search Registry Samples Assays Media Workflow Experimen	ts				
< Registry	Molec	ule Sets	Molecules Molecular Species Protein Sequences Nucleotide Sequences Expression Systems	Constructs Vect	ors Cell Lines			
🎢 In	isert New	-	Select					
N	ame 💿	Alias C	Description	JNJNumber ©	Components 💿	Avg. Mass 💿	pl 💿	۵ 3
	675	E	411 on hulgG4 PAA	65403117	CDS000049515, CDS000049696	143563.31	7.720	195000
	570	E	396 on hulgG4 PAA	66564069	CDS000048217, CDS000048239	145499.25	7.690	210000
)04	3	04 PTM variant	66610479	CDS000054252, CDS000054268	146085.93	6.850	226000
	782	3	PTM variant	66563081	CDS000048396, CDS000046945	142818.28	7.330	231000
	878		GeneArt construct. Anti-PD1 agonist lead molecule 878 in Lonza vector. Both 405 and 169 utilize the MARKS signal	67484703	CDS000045130, CDS000055476	146250.72	7.460	221000
	849		GeneArt construct. Anti-PD1 agonist lead molecule 849 in Lonza vector. Both 403 and 170 utilize the MARKS signal 849 in Lonza vector. Both 403 and	65724243	CDS000045131, CDS000054038	145397.66	8.190	227000

pharmaceutical companies of Johnson Johnson

janssen

Typical Cell Line Development Process

Typical Cell Line Development Process - Data

Samples – Parental Cloning

PHARMACEUTICAL COMPANIES OF

Johnson Johnson

Janssen

Sample – Subcloning

PHARMACEUTICAL COMPANIES OF

Johnson & Johnson

janssen

Assays

😪 LabKey Biologics	Search	Registry	Samples	Assays	Media Wo	orkflow Exp	eriments	Reports					
Assays													Create - Manage -
Capture analytical data about samples													
	Oct	Nov	Dec	Jan	Feb	Mar	Apr	Mav	Jun	Jul	Aug	Sep	12 month total runs
CIEF													4
cSDS-NonReduced													1
cSDS-Reduced													1
Non-Reduced GXII													4
PeptideMap-PTM													4
Reduced GXII													4
SEC													4
Titer-aProA													9
Titer-Octet													20
Vi-CELL													26

Assay - RMA Glycosylation Profile Results

M	A Results											
Imp	port Data				Select							1 - 16 of 16
	Project 💿	JNJ #	C-Code	% Glycation	٢	% Agly ©	% Man5 💿	% G0 💿	% G0F-GlcNac 💿	% G0F 💿	% G1F 💿	% G2F
	(C):)	67484703	C3267B		3.1	C	0	3.6	0	89.3	7.1	
	(101)	67484703	C3268B		4	C	0	0	0	88.2	11.8	
	(10)	67484703	C3268C		3.6	0	0	0	0	80.6	19.4	
		67484703	C3268D		4	0	0	0	0	78.6	21.4	
	(101)	67484703	C3269B		4	C	0	1.8	0	90.6	7.6	
	(TD:)	67484703	C3270B		4.7	C	0	0	0	93.2	6.8	
	([]]	67484703	C3271B		4.7	0	0	0	0	91.5	8.5	
	(D):	67484703	C3272B		4.1	0	0	2.2	0	88.1	9.7	
	()	65724243	C3262B		0.9	0	3.7	7	4.2	72.6	12.5	
	([]]]	65724243	C3263B		0.9	0	3.9	7	4.1	72.7	12.1	
	(10:10)	65724243	C3264B		1	C	3.5	8.9	3.9	71	12.6	
	ED:	65724243	C3264C		1.1	C	4.2	8.5	4.4	68.9	14.1	
		65724243	C3265B		1.1	C	4.8	7.6	4.1	75.3	8.2	
		65724243	C3265C		1	0	0	8.2	2.1	77.7	12	
	E21	65724243	C3265D		1	0	3.5	5.9	4.4	81.3	4.9	

BioTherapeutics Development

Pharmaceutical companies of Johnson Johnson

Janssen

Assay- RMA Glycosylation Profile Report

PHARMACEUTICAL COMPANIES OF

Johnson "Johnson

janssen

Experiments – Included Samples

Expe	eriments	Overview	Assays Files													
0		I API N	/ledia Evaluation											' Star ₽	t Date: 201 End Date: N Modified	Delete 9-04-09 14:1 None specifie 5 months ag
Incl	luded San	ples														
N	lanage -	Charts	•				Select							1 - 10 of 10	≵ G	rid Views -
S	Samples H	I T A (10)	Samples M S	(10)												
	AD # 💿	Project	Name	NJ # 💿	Clone C-Code	Sample D	escription ©	Comments ©	Group 💿	ELN Reference O	Concentration (mg/ml) 💿	Buffer/Sample Matrix	⊙ Test ⊙	Scope (Storage Te
	AD800		67	7957591		Level 2 Va Harvest	ariable Feed, 18d		API	Pre-NME- Dual Agonist-n001- 00027		18.84	86mM Bis Tris, 91mM Acetate, pH 6.0	API AMBR Module Package	API AMBR Module	-80°C
	AD800	(010000)	67	7957591		Level 2 Fi Harvest B	xed Feed, 18d		API	Pre-NME- Dual Agonist-n001- 00027		18.28	86mM Bis Tris, 91mM Acetate, pH 6.0	API AMBR Module Package	API AMBR Module	-80°C
	AD800	(01.777.7)	67	7957591		Level 2 Fi Harvest A	xed Feed, 18d		API	Pre-NME- Dual Agonist-n001- 00027		19.02	86mM Bis Tris, 91mM Acetate, pH 6.0	API AMBR Module Package	API AMBR Module	-80°C
	AD800	(JLI I I I)	67	7957591		Level 1 Va Harvest	ariable Feed, 18d		API	Pre-NME- Dual Agonist-n001- 00027		19.13	86mM Bis Tris, 91mM Acetate, pH 6.0	API AMBR Module Package	API AMBR Module	-80°C
	AD800	()	67	7957591		Level 1 Fi Harvest B	xed Feed, 18d		API	Pre-NME-Carlos Pre-NME-CAPCPA Pre-NME-CARLos Pre-NM		19.53	86mM Bis Tris, 91mM Acetate, pH 6.0	API AMBR Module Package	API AMBR Module	-80°C

PHARMACEUTICAL COMPANIES OF

Johnson Johnson

janssen

Experiments – Assay

< Ex	perin	ments	Overview	Assays Files	3										
ţ				Nedia Evaluatio	'n									Start Date: 2019-04-09 End Date: None sp Modified 5 mont	Delete 9 14:11 pecified ths ago
A	ssay	/ Results	5												
	Cha	arts 👻					S	Select					1 - 10	of 10 🛃 Grid View	WS 🔻
	CIE	EF (10)	cSDS-N	onReduced (10)) cSDS-	Reduced (10)	Non-Reduced	d GXII (10)) Reduced GXI	I (10) SEC (10)					
0		AD # 💿	Project	Name	JNJ # 💿	Barcode ©	predicted pl	0	measured pl	pl Peak Area 🛛 🛇	Acidic Variants Peak Ar	ea 📀	Basic Variants Peak Area	% C-terminal Lysine	0
(- 4	AD800	CL::	CL	67957591	NA0009935836			5.471	32.4		58.2	9.4		
1	- /	AD800	CL	CL	67957591	NA0009936901			5.472	34.4		58.3	7.3		
ĺ		AD800	CL::	C	67957591	NA0009998148			5.472	31.5		61.7	6.8		
1		AD800	CL	CL	67957591	NA0009998459			5.473	30.8		61.7	7.5		
(AD800	CLERY	(01.7772.)	67957591	NA0009939313			5.47	29.8		56	14.2		
6		AD800	CL /	C	67957591	NA0009999549			5.472	28.3		57.1	14.6		
(AD800	CLC CYM	()	67957591	NA0009998168			5.471	27.2		60.1	12.7		
(AD800	CLERTY	(CL)	67957591	NA0009937693			5.468	28		60.4	11.6		
(AD800	CL /	C	67957591	NA0009999314			5.47	25.7		62.1	12.2		
(AD800	CL /	GLI 1104	67957591	NA0009998778			5.467	25.8		61.1	13		
					1	1				1					

pharmaceutical companies of Johnson Johnson

Janssen

Janssen

Challenges

3

Sample ID and Lineage

- Where to get Parent/Children information from assay data file?
- Linking existing IDs with autogenerated IDs or barcodes
- Change management

Automation – exported data

NA0009269461 CDS000067080

1					[rupAlios	NA0009270898-	NA0009257530-	NA0009255595-	NA0009269461-	NA0009258176-	
2	Sequence\n(unformatted)	Mod.\nAA	Var. Pos.	Var. Pos.	Mod.\nNames	r C3426A	C3430A	C3431A	C3434A	3423A	
3	CTTTTT R	M	4	253	Oxidation/15.9949	6.47	7.64	5.9	7.09	10.5	
4	K	М	12	429	Oxidation/15.9949	2.68	3.79	2.5	3.54	5.3	
5	C	N	19	390	Deamidated/0.9840	0.787	0.777	0.466	0.885	0.78	
6		E	1	1	Glu-pyro-Glu/-18.0	lí 1.67	2.41	2.1	2.5	1.66	
7	CLOLOR C)			447		98.67	98.78	98.55	98.08	98.98	
8	CLOLOR GIV			448		1.33	1.22	1.45	1.92	1.02	
9	622777777777777777777777777777777777777	С	9	95	Cys->Tyr/3.0327	0.192			0.193		
10		С	7	368	Cys->Tyr/3.0327	0.0514	0.0491				
11	CTODOTAALOOLVK I	C	11	145	Cys->Tyr/3.0327	0.0521					
Results						Trans	form Sc	ripts (H	lannah)		
Import [Charts -			Select					1 - 20 of 81	< > ±	G
Import [Project ◎ Name ◎ JNJ # ◎ C-	Code 💿	Barcode	Select	uence O Chain O F	eptide	Mod Names	Mod AAs	1 - 20 of 81 Var Pos Protein	Condition	G
AD #	Project Name JNJ # C- 6 Control PT1B844 73292440 Ca	Code ③ 3428A	Barcode NA00092708	Select Prot Seq 98 CDS0000	uence O Chain F 267080 HC	eptide R	 Mod Names Cys->Tyr/3.032 	Mod AAs O 7 C	1 - 20 of 81 Var Pos Protein	Condition O 1	Perc
Import 0 AD # AD81 AD81	Project Name JNJ # C- 6 CD11000 PT1B844 73292440 C3 6 CD11000 PT1B844 73292440 C3	Code © 3428A 3430A	Barcode NA00092708 NA00092575	Select Prot Seq Prot Seq Solution S	uence Chain F 067080 HC 2 067080 HC 2	eptide R R	Mod Names Cys->Tyr/3.032 Cys->Tyr/3.032	Mod AAs O 27 C 27 C	1 - 20 of 81 Var Pos Protein	Condition O P5 RP P5 RP	G Perc

HC

Cys->Tyr/3.0327

С

janssen

BioTherapeutics Development

PT1B844 73292440 C3434A

AD816

pharmaceutical companies of Johnson Johnson

0.193

95 RP

Automation - instruments

PHARMACEUTICAL COMPANIES OF

Johnson & Johnson

janssen

Typical Cell Line Development Process

Projects

BioTherapeutics Development

| pharmaceutical companies of Johnson →Johnson

Janssen

Business intelligence in the CLD process

Efficient CLD process

- Cell line development tracking
- Analytical data integration
- Automated report generation

Informed Decision Making

- Data Integrity
- Intelligence

Acknowledgement

Hirsh Nanda

Aapjeet Fnu

Hannah Brakke Kevin Krouse Susan Hert Ryan Luce

Thank you

